Math Problem Statement

(10^-3)^-5

Solution

The expression (103)5(10^{-3})^{-5} can be simplified by using the property of exponents (am)n=amn(a^m)^n = a^{m \cdot n}.

Let's simplify:

(103)5=103×5=1015(10^{-3})^{-5} = 10^{-3 \times -5} = 10^{15}

Thus, (103)5=1015(10^{-3})^{-5} = 10^{15}.

Would you like any further details or have any questions?

Here are 5 related questions to explore:

  1. How do you simplify (a2)3(a^{-2})^{-3}?
  2. What is the value of (24)2(2^{-4})^2?
  3. How do you apply the power of a power rule in exponents?
  4. What is the value of 103×10210^3 \times 10^2?
  5. How do you simplify (105)3\left(\frac{10}{5}\right)^3?

Tip: When raising a power to another power, multiply the exponents!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Powers

Formulas

(a^m)^n = a^{m*n}

Theorems

Power of a Power Rule

Suitable Grade Level

Grades 8-10